Daniel Kosiorowski , Jerzy P. Rydlewski , Zygmunt Zawadzki
ARTICLE

(Polish) PDF

ABSTRACT

Methods of functional outliers detection in functional setting have been discussed, i.e. shape outliers and magnitude outliers. Outliergram has been discussed, a tool for functional shape outliers detection. Robust adjusted functional boxplot has been discussed as well, a tool for functional magnitude outliers detection. „The elements of functional outliers analysis have been applied to air pollution data for Katowice and Kraków.”

KEYWORDS

functional outliers, functional outliers detection, robust statistics, functional depth, air pollution analysis

REFERENCES

Arribas-Gil A., Romo J., (2014), Shape Outlier Detection and Visualization for Functional Data: the Outliergram, Biostatistics, 15 (4), 603–619.

Cuevas A., Febrero M., Fraiman R., (2006), On the Use of the Bootstrap for Estimating Functions with Functional Data, Computational Statistics & Data Analysis, 51 (2), 1063–1074.

Febrero-Bande M. O., de la Fuente M., (2012), Statistical Computing in Functional Data Analysis: The R Package fda.usc, Journal of Statistical Software, 51 (4), 1–28.

Fraiman R., Muniz G., (2001), Trimmed Means for Functional Data, Test, 10 (2), 419–440.

Gervini D., (2008), Robust Functional Estimation Using the Median and Spherical Principal Components, Biometrika, 95 (3), 587-600.

Gijbels I., Nagy S., (2015), Consistency of Non-Integrated Depths for Functional Data, Journal of Multivariate Analysis, 140, 259–282.

Górecki T., Krzyśko M., Waszak Ł., Wołyński W., (2014), Methods of Reducing Dimension for Functional Data, Statistics in Transition, 15 (2), 231–242.

Górecki T., Krzyśko M., Waszak Ł., Wołyński W., (2018), Selected Statistical Methods of Data Analysis for Multivariate Functional Data, Statistical Papers,59 (1), 153–182.

Horváth L., Kokoszka P., (2012), Inference for Functional Data with Applications, Springer-Verlag, New York.

Hubert M., Rousseeuw P., Segaert, P., (2015), Multivariate Functional Outlier Detection, Statistical Methods and Applications, 24 (2), 177–202.

Ieva F., Paganoni A. M., (2016), A Taxonomy of Outlier Detection Methods for Robust Classification in Multivariate Functional Data. Technical Report 15/2016, MOX – Modeling and Scientific Computing Laboratory.

Kosiorowski D., (2012), Statystyczne Funkcje Głębi w Odpornej Analizie Ekonomicznej, Wydawnictwo UEK w Krakowie, Kraków.

Kosiorowski D., (2016), Dilemmas of robust analysis of economic data streams, Journal of Mathematical Sciences (Springer), 218 (2), 167–181.

Kosiorowski D., Rydlewski, J. P., Snarska M., (2017) Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic, Statistical Papers, DOI 10.1007/s00362-017-0891-y.

Kosiorowski D., Zawadzki, Z. (2014) DepthProc An R Package for Robust Exploration of Multidimensional Economic Phenomena, arXiv preprint arXiv:1408.4542.

Kraus D., Panaretos V. M., (2012), Dispersion Operators and Resistant Second-Order Functional Data Analysis, Biometrika, 99 (4), 813–832.

Liu R. Y, (1990), On a Notion of Data Depth Based on Random Simplices, The Annals of Statistics, 18 (1), 405–414.

Liu R. Y., Parelius J., Singh K., (1999), Multivariate Analysis by Data Depth: Descriptive Statistics, Graphics and Inference. The Annals of Statistics, 27 (3), 783–858.

Liu R. Y., Singh K., (1993), A Quality Index Based on Data Depth and Multivariate Rank Tests, Journal of the American Statistical Association, 88 (421), 252–260.

Loeve M., (1978), Probability Theory. Springer-Verlag, New York.

López-Pintado S., Jörnsten R., (2007), Functional Analysis via Extensions of the Band Depth, w: Liu R., Strawderman W., Zhang C. H., (red.), Complex Datasets and Inverse Problems: Tomography, Networks and Beyond, 54,103–120, Institute of Mathematical Statistics, IMS Lecture Notes –Monograph Series.

López-Pintado S., Romo J., (2007), Depth-Based Inference for Functional Data, Computational Statistics & Data Analysis, 51 (10), 4957–4968.

López-Pintado S., Romo J., (2009), On the Concept of Depth for Functional Data, Journal of the American Statistical Association, 104 (486), 718–734.

Martin-Barragan B., Lillo R. E., Romo J., (2015)., Functional Boxplots Based on Epigraphs and Hypographs, Journal of Applied Statistics, 43 (6), 1088–1103.

Mosler K., (2013), Depth Statistics, w: Becker C., Fried R., Kuhnt S., (red.), Robustness and Complex Data Structures, Springer-Verlag Berlin Heidelberg, 17–34.

Mosler K., Polyakova Y., (2016), General Notions of Depth for Functional Data, arXiv: 1208.1981v2.

Nagy S., Gijbels I., Omelka M., Hlubinka D., (2016), Integrated Depth for Functional Data: Statistical Properties and Consistency, ESIAM Probability and Statistics, 20, 95–130.

Nieto-Reyes A., Battey H., (2016), A Topologically Valid Definition of Depth for Functional Data, Statistical Science, 31 (1), 61–79,

Ramsay J. O., Hooker G., Graves S., (2009), Functional Data Analysis with R and Matlab, Springer – Verlag, New York.

Rousseeuw P. J., Croux C., (1993), Alternatives to the Median Absolute Deviation, Journal of the American Statistical Association, 88 (424), 1273–1283.

Sun Y., Genton M., (2011), Functional Boxplots, Journal of Computational and Graphical Statistics, 20 (2), 316–334.

Sun Y., Genton M., (2012), Adjusted Functional Boxplots for Spatio-Temporal Data Visualization and Outlier Detection, Environmetrics, 23 (1), 53–64.

Szlachtowska E., (2017), Odporna analiza skupisk w badaniach nowej ekonomii, Rozprawa doktorska, Uniwersytet Ekonomiczny w Krakowie.

Tarabelloni N., (2017), Robust Statistical Methods in Functional Data Analysis, Rozprawa doktorska, Politecnico di Milano.

Tukey J., (1975), Mathematics and the Picturing of Data, Proceedings of the International Congress of Mathematicians, Vancouver, 2, 523–531.

Zuo Y., Serfling R., (2000a), General Notions of Statistical Depth Function, The Annals of Statistics, 28 (2), 461–482.

Zuo Y., Serfling R., (2000b), Structural Properties and Convergence Results for Contours of Sample Statistical Depth Functions, The Annals of Statistics, 28 (2), 483–499.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0